

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Spectra of a Linear Alternating L,D Hexapeptide with a Type II β -Turn Structure

Vaman M. Naik^a

^a Department of Natural Sciences, The University of Michigan-Dearborn, Dearborn, MI, USA

To cite this Article Naik, Vaman M.(1992) 'Vibrational Spectra of a Linear Alternating L,D Hexapeptide with a Type II β -Turn Structure', Spectroscopy Letters, 25: 8, 1231 — 1241

To link to this Article: DOI: 10.1080/00387019208017861

URL: <http://dx.doi.org/10.1080/00387019208017861>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL SPECTRA OF A LINEAR ALTERNATING L,D
HEXAPEPTIDE WITH A TYPE II β -TURN STRUCTURE

KEY WORDS: Raman spectra; IR spectra; Boc-(D-allo-L-Ile)₃-OMe; β -turn
 α -helix; amide modes; vibrational assignment

Vaman M. Naik

Department of Natural Sciences, The University of Michigan-Dearborn
Dearborn, MI 48128 USA

ABSTRACT

Raman and infrared spectra of Boc-(D-allo-L-Ile)₃-OMe (ILEU-6) and its N-deuterated derivative have been measured. Conformationally sensitive amide vibrations have been identified and compared with the observed and calculated frequencies of Pro-Leu-Gly-NH₂ which has a type II β -turn structure. The observed frequencies of ILEU-6 have also been compared with the normal mode calculations of a standard model type II β -turn structure and a good agreement has been found in these comparisons. The additional frequencies observed for this particular structure are assigned to the residues that are not involved in the β -turn.

INTRODUCTION:

During the past few years the conformational characteristics of polypeptides with a regular sequence of L and D residues along the chain have been investigated. This is mainly due to their analogy with gramicidin A, a natural linear pentadecapeptide that forms an ion conducting channel across natural and synthetic lipid bilayer membranes. These L,D-alternating oligopep-

tides can assume a variety of single and double-helical structures [1-6]. Two octapeptides, Boc-(L-Val-D-Val)₄-OMe and Boc-(L-Phe-D-Phe)₄-OMe, are shown to exist in a double-stranded antiparallel β -structure ($\uparrow\downarrow\beta^{5,6}$, where 5,6 denotes the total number of residues per turn of the helix) [7,8].

L,D-peptides with smaller number of residues can take up different conformations, including the β -turn structures. A theoretical investigation by Chandrasekaran et al. [9] has shown the possibility of existence of a particularly stable conformation for L-D-sequence of three linked peptides having an internal 4 \rightarrow 1 type hydrogen bond. Such conformation leads to the reversal of the chain direction and is called "hairpin-bend" or "U-bend" or more commonly β -turn, as it can occur at the end of two chains hydrogen-bonded in the antiparallel β -conformation.

In the present work Boc-(D-allo-L-Ile)₃-OMe (ILEU-6) has been studied using infrared (IR) and Raman spectroscopy in the solid state to show that it has amide vibrations that are characteristic of a type II β -turn structure. X-ray analysis has shown that in the crystalline state this molecule has a β -turn (C₁₀) and an α -turn (C₁₃) fused together and they are included in a larger 17-membered hydrogen-bonded ring structure (C₁₇) as shown in Fig. 1. The observed torsion angles ϕ and ψ of the peptide backbone are: (ϕ , ψ)₁ = 133°, -160°; (ϕ , ψ)₂ = -77°, 120°; (ϕ , ψ)₃ = 115°, -13°; (ϕ , ψ)₄ = -129°, -50°; (ϕ , ψ)₅ = 94°, -134° and ϕ_6 = -114° [10]. The β -turn observed in this molecule is a type II β -turn according to Venkatachalam's classification [11]. Krimm and Bandekar [12] have done normal mode vibrational analyses for β -turns of types I, II, III, I', II' and III'. Naik and Krimm [13] have calculated the normal modes of Pro-Leu-Gly-NH₂, which has been shown from x-ray crystallographic studies to have a type II β -turn structure.

EXPERIMENTAL

Boc-(D-allo-L-Ile)₃-OMe was synthesized and kindly provided by Dr. G. P. Lorenzi. The molecule was N-deuterated by dissolving it in CH₃OD and then adding D₂O to the mixture. Slow evaporation of the solution yields very good single crystals.

IR spectra were recorded in KBr disks using a Bomem DA/3 Fourier Transform IR (FTIR) spectrometer in 4000 - 500 cm⁻¹ region with a reso-

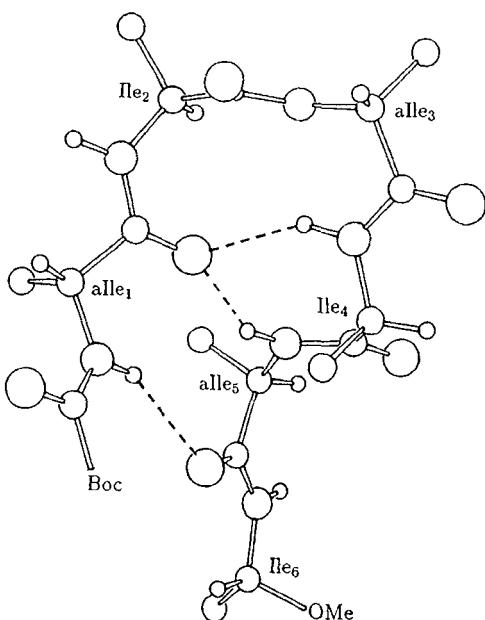


FIG. 1. Structure of Boc-(D-alle-L-Ile)₃-OMe. Only the C^β atoms of the side chains are shown. Intramolecular hydrogen bonds are indicated with dashed lines.

lution of 1 cm⁻¹. Raman spectra were recorded, using a Spex 1403 double monochromator spectrometer with an excitation line of 514.5 nm from a Spectra-Physics 165 Ar⁺ laser. An incident laser power of ~150 mw was focused at the samples sealed in glass capillaries. The spectral band pass was ~2 cm⁻¹ at 514.5 nm, and the step resolution used was 1 cm⁻¹ in all the spectra.

RESULTS AND DISCUSSION

The observed IR spectra of ILEU-6 and its N-deuterated derivative are shown in Figs. 2-4. The Raman spectra of these molecules are shown in Fig. 5. Table I lists the observed IR and Raman amide A, B, I, II, III and V frequencies. Here, mainly the conformationally sensitive modes, namely amide I, II, III and V will be discussed.

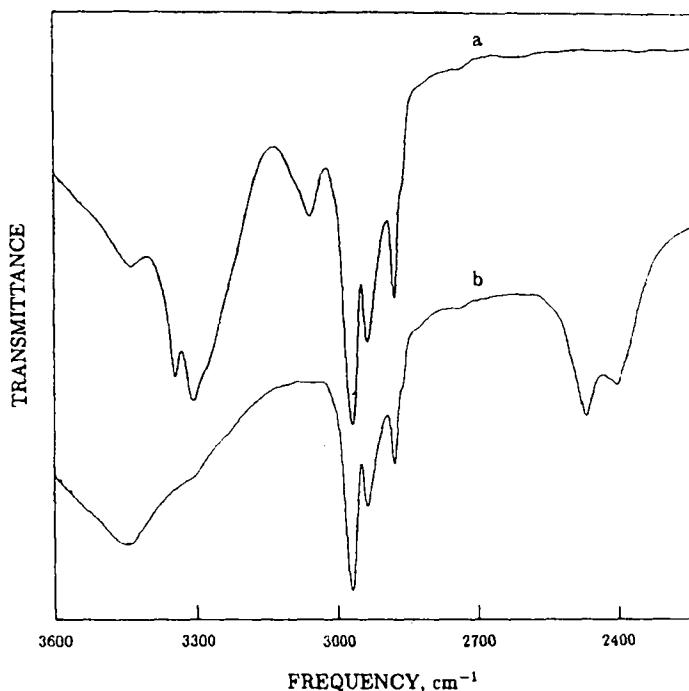


FIG. 2. Infrared spectra in the 3600–2200 cm^{-1} region of (a) Boc-(D-allo-L-Ile)₃-OMe and (b) its N-deuterated derivative.

The amide I mode is primarily CO stretch along with some CN stretch and C^αCN deformation. There are four observed amide I modes in the IR spectrum at 1691, 1683, 1665 and 1639 cm^{-1} , and three in the Raman spectrum at 1679, 1663 and 1638 cm^{-1} . These modes are similar to those observed in Pro-Leu-Gly-NH₂ (PLG) [13] which has a type II β -turn structure in the solid state. In PLG the lowest IR and Raman frequency is ~ 1650 cm^{-1} which is somewhat higher than the one observed in ILEU-6. This lowest frequency band is outside the range of the amide frequencies (1656-1693 cm^{-1}) calculated for a model type II β -turn [12]. This band may be assigned to the CO groups of Ile₄ and allo₅, which are involved in an extended hydrogen-bonded structure.

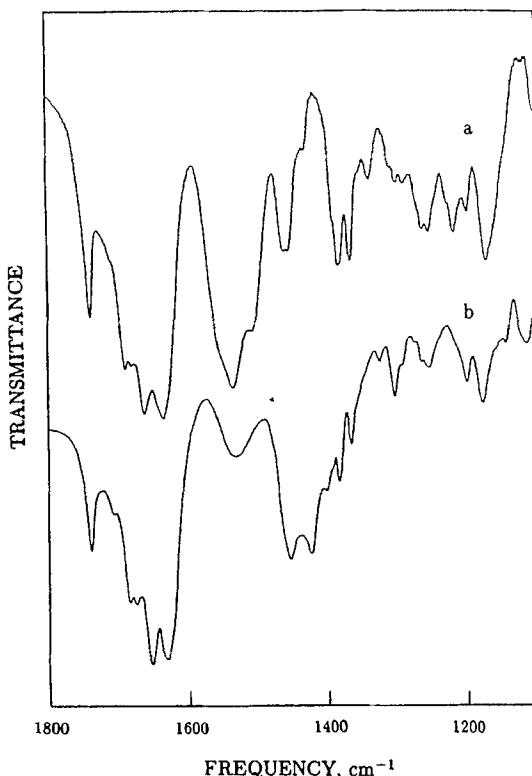


FIG. 3. Infrared spectra in the 1800–1000 cm⁻¹ region of (a) Boc-(D-allo-L-Ile)₃-OMe and (b) its N-deuterated derivative.

The amide II mode consists mainly NH in-plane motion along with some contribution from CN stretching. This mode is intrinsically weak in the Raman spectrum and often not detectable. In the IR spectrum there are three amide II bands: a shoulder ~ 1550 cm⁻¹, a very strong band at 1536 cm⁻¹, and a medium strong band at 1509 cm⁻¹ all of which loose intensity on N-deuteration (Fig. 3). The 1550 and 1538 cm⁻¹ bands are close to the predicted amide II modes of a model type II β -turn (1540 - 1558 cm⁻¹) [12]. The lowest frequency band observed at 1509 cm⁻¹ is outside the range of the predicted modes and may be assigned to the NH groups of the residues that

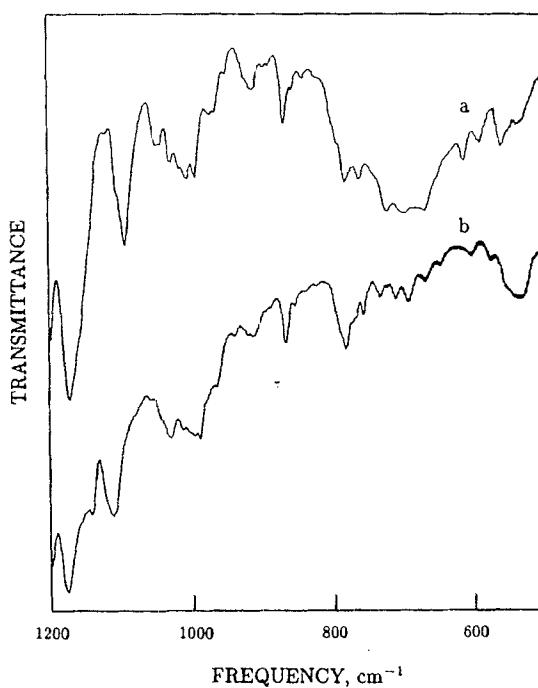


FIG. 4. Infrared spectra in the $1200 - 500 \text{ cm}^{-1}$ of (a) Boc-(D-allo-L-Ile)₃-OMe and (b) its N-deuterated derivative.

are not involved in the β -turn or it may be due to the particular structure of this hexapeptide.

The amide III mode consists of NH in-plane motion and CN stretching. There are four bands in the IR spectrum at $1264, 1255, 1227$ and 1218 cm^{-1} , and five bands in the Raman spectrum at $1270, 1261, 1245, 1229$ and 1219 cm^{-1} that are clearly identifiable on N-deuteration (Figs. 3 and 5). PLG shows similar bands in the high frequency region whereas the frequencies observed $\sim 1220 \text{ cm}^{-1}$ in ILEU-6 are outside the range of frequencies predicted for a model type II β -turn and the range of amide III frequencies observed in PLG. However, β -poly-L-alanine shows a strong Raman band at 1222 cm^{-1} and an IR band at 1226 cm^{-1} [14]. These low frequency bands may

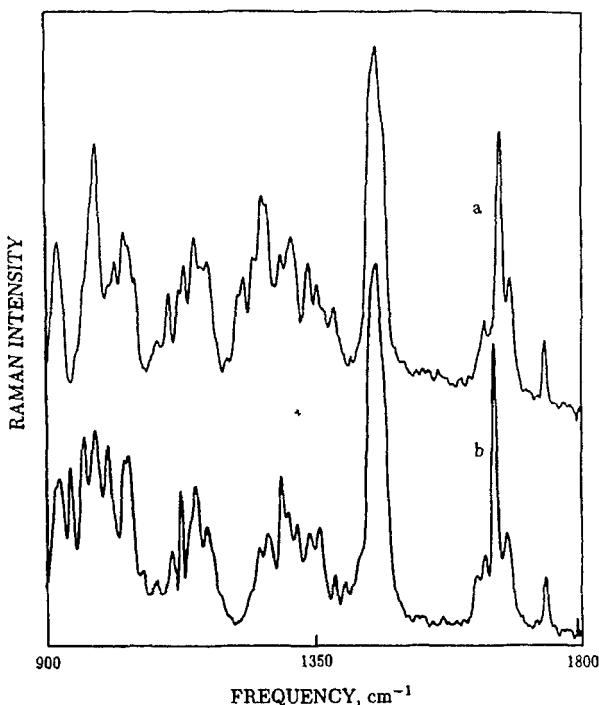


FIG. 5. Raman spectra in the $900-1800\text{ cm}^{-1}$ region of (a) Boc-(D-allo-L-Ile)₃-OMe and (b) its N-deuterated derivative.

be arising from the residues not involved in the formation β -turn. ILEU-6 being a hexapeptide forms an extended hydrogen bonded structure in addition to a β -turn structure. It should also be pointed out that amide III modes are affected by the nature of the side chains [15]. Recent vibrational circular dichroism studies have found the existence of coupling between C-H and N-H coordinates for amide III modes [16].

The amide V mode consists of NH out-of-plane bend plus CN torsion. There are four bands in the IR at 720, 696, 672 and 612 cm^{-1} that lose intensity on N-deuteration (Fig. 4). These frequencies agree reasonably well with the calculated (699, 657, 603 and 575 cm^{-1}) and observed (699, 647

Table I

Observed amide frequencies (cm^{-1}) of ILEU-6 in the crystalline state

Mode	IR [†]	Raman [†]
Amide A	3345 vs	3347 vw
	3307 vs	3306 vw
Amide B	3085 sh	
	3060 m	
Amide I	1691 s	
	1683 m	1679 s
	1665 vs	1663 vs
	1639 vs	1638 m
Amide II	1550 sh	
	1536 vs	
	1509 m	
Amide III		1270 m
	1264 w	1261 s
	1255 w	1245 m
	1227 sh	1229 m
	1218 w	1219 sh
Amide V	720 m	
	696 m	703 vw
	672 m	
	612 w	611 vw

[†]s=strong, m=medium, v=very, w=weak, and sh=shoulder

and 614 cm^{-1}) frequencies of PLG [13]. The amide V mode observed at 720 cm^{-1} may be due to the particular structure of this fused β -turn and an α -turn structure. It should be noted that ILEU-6 has peptides that deviate as much as 18° from planarity [10] and it is possible that the observed high frequency amide V mode is linked to these nonplanar peptide groups.

CONCLUSIONS

The observed amide I, II, III and V vibrations of ILEU-6 are consistent with the frequencies predicted for a standard type II β -turn and the observed frequencies of Pro-Leu-Gly-NH₂, which has a type II β -turn structure in the crystalline state. The additional frequencies found in the amide I region $\sim 1638\text{ cm}^{-1}$, in the amide II region $\sim 1509\text{ cm}^{-1}$, and in the amide III region $\sim 1220\text{ cm}^{-1}$ for this hexapeptide are assigned to the extended structure present in this peptide. The additional high frequency amide V band observed at 720 cm^{-1} in the IR spectrum may be associated with the nonplanar peptide groups found in this peptide or it may be a characteristic of this particular structure of ILEU-6, which has a fused β -turn and an α -turn structure.

ACKNOWLEDGMENTS

The author is grateful to Dr. S. Krimm for providing the use of his spectroscopy laboratory, Dr. G. P. Lorenzi for providing the sample used in this work and Horace H. Rackham School of Graduate Studies for faculty fellowship.

REFERENCES

1. Urry D. W. A molecular theory of ion-conducting channels: A field dependent transition between conducting and nonconducting conformations. *Proc. Natl. Acad. Sci. U.S.A.* 1972; 69: 1610.
2. Hesselink F. T. & Scheraga H. A. On the possible existence of α -helical structures of regular sequence D,L copolymers of amino acids. Conformational energy calculations. *Macromolecules* 1972; 5: 455.
3. Ramachandran G. N. & Chandrasekaran R. Conformation of peptide chains containing both L- and D- residues. 1. Helical structures with

alternating L- and D- residues with special reference to the LD-ribbon and LD-helices. Indian J. Biochem. Biophys. 1972; 9: 1.

4. Prasad B. V. V. & Chandrasekaran R. Conformation of polypeptide chains containing both L- and D- residues. Int. J. Peptide Protein Res. 1977; 10: 129.
5. Lotz B., Colonna-Cesari F., Heitz F. & Spach G. A family of helices of alternating poly(γ -benzyl-D-L-glutamate), a stereochemical model for gramicidin A. J. Mol. Biol. 1976; 106: 915.
6. Colonna-Cesari F., Premilat S., Heitz F., Spach G. & Lotz B. Helical structures of poly(D-L-peptides). A conformational energy analysis. Macromolecules 1977; 10: 1284.
7. Di Blasio B., Benedetti E., Pavone E., Pedone C., Spiniello O. & Lorenzi G. P. Regularly alternating L,D-peptides. I. The double-stranded left-handed antiparallel β -helix in the structure of Boc-(L-Val-D-Val)₄-OMe. Biopolymers 1989; 28: 193.
8. Di Blasio B., Benedetti E., Pavone V., Pedone C. & Lorenzi G. P. Regularly alternating L,D-peptides. II. The double-stranded right-handed antiparallel β -helix in the structure of *t*-Boc-(L-Phe-D-Phe)₄-OMe. Biopolymers 1989; 28: 203.
9. Chandrasekaran R., Lakshminarayanan A. V., Pandya U. V. & Ramachandran G. N. Conformation of the LL and LD hairpin bends with internal hydrogen bonds in proteins and peptides. Biochim. Biophys. Acta. 1973; 303: 14.
10. Bavoso A., Benedetti E., Di Blasio B., Pavone V., Lorenzi G. P. & Muri-Valle V. A hairpin-shaped peptide conformation stabilized by multiple intramolecular H-bonds for a linear alternating D,L hexapeptide. Biochem. Biophys. Res. Commn. 1982; 107: 910.
11. Venkatachalam, C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968; 6: 1425.

12. Krimm S. & Bandekar J. Vibrational analysis of peptides, polypeptides, and proteins. V. Normal vibrations of β -turns. *Biopolymers* 1980; 19: 1.
13. Naik V. M. & Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. XVII. Normal modes of crystalline Pro-Leu-Gly-NH₂, a type II β -turn. *Int. J. Peptide Protein Res.* 1984; 23: 1.
14. Krimm S. & Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. *Adv. Protein Chem.* 1986; 38: 181.
15. Bandekar, J. Amide III bands and protein conformation: A case study. In: Durig J. & Sullivan J. ed. *Proc. Int. Conf. Raman Spectrosc.* 12th; John Wiley, New York: 1991: 647-647.
16. Roberts G. M., Lee O., Calienni, J. & Diem M. Infrared vibrational circular dichroism in the amide III spectral region of peptides. *J. Am. Chem. Soc.* 1988; 110: 1749.

Date Received: 05/26/92
Date Accepted: 06/30/92